Self Vertex Switching of Connected Bicyclic Graphs

C. Jayasekaran and G. Sumathy

Abstract—A vertex \(v \) \(V(G) \) is said to be a self vertex switching of \(G \) if \(G \) is isomorphic to \(G' \), where \(G' \) is the graph obtained from \(G \) by deleting all edges of \(G \) incident to \(v \) and adding all edges incident to \(v \) which are not in \(G \). In [5], trees and forests are characterized, each with a self vertex switching. In [6], connected unicyclic graphs, each with a self vertex switching are characterized. In this paper, we characterize connected bicyclic graphs, each with a self vertex switching.

Keywords---Switching, Self Vertex Switching, Bicyclic, \(SS(G) \), \(ss_s(G) \).

I. INTRODUCTION

For a finite undirected simple graph \(G(V,E) \) with \(|V(G)| = p \) and a set \(\sigma \subseteq V \), the switching of \(G \) by \(\sigma \) is defined as the graph \(G'\sigma(V,E\sigma) \), which is obtained from \(G \) by removing all edges between \(\sigma \) and its complement \(V - \sigma \) and adding as edges all non-edges between \(\sigma \) and \(V-\sigma \). Switching has been defined by Seidel [2] and is also referred to as Seidel switching. When \(\sigma = \{v\} \subseteq V \), we call the corresponding switching \(G^{(v)} \) as vertex switching and denoted it as \(G' \) [1]. A subset \(\sigma \) of \(V(G) \) to be a self switching of \(G \) if \(G \cong G' \). The set of all self switching of \(G \) with cardinality \(k \) is denoted by \(SS_k(G) \) and its cardinality by \(ss_s(G) \). If \(k = 1 \), then we call the corresponding self switching as self vertex switching [1, 3].

A branch at \(v \) in \(G \) is a maximal connected subgraph \(B \) of \(G \) such that the intersection of \(B \) with the vertex \(v \) is \(v \) and \(B - v \) is connected [3]. A walk in a graph is a finite non-null sequence whose terms are alternatively vertices and edges. A path is a walk in which all the vertices are distinct. A path with \(n \) vertices is denoted by \(P_n \). Two vertices \(u \) and \(v \) are said to be interchange similar if there is an automorphism \(f \) of \(G \) such that \(f(u) = v \) and \(f(v) = u \).

In [4], a characterization of interchange similar vertices to be self vertex switchings was given. In [5], trees and forests are characterized, each with a self vertex switching. In [6], connected unicyclic graphs, each with a self vertex switching is characterized. In this paper we characterize the connected bicyclic graphs, each with a self vertex switching. We consider simple graphs only. Now consider the following results, which are required in the subsequent sections.

Theorem 1.1.[1] If \(v \) is a self vertex switching of a graph \(G \) of order \(p \), then \(d_G(v) = (p-1)/2 \).

Theorem 1.2.[3] Let \(v \) be any vertex of a connected graph \(G \) such that \(G' \) is connected. Then \(B \) is a branch at \(v \) in \(G \) if and only if \(B' \) is a branch at \(v \) in \(G' \).

Theorem 1.3.[5] Let \(v \in V(G) \) and \(|V(G)| \geq 2 \). Then \(G' \) is connected if and only if \(d_G(v) = 0 \) or \(d_G(v) < |V(B)|-1 \) for every branch \(B \) at \(v \) in \(G \).

Theorem 1.4.[5] Let \(v \) be a vertex of a non-trivial connected graph \(G \). Then \(G' \) is a tree if and only if \(G-v \) is acyclic and \(d_G(v) = |V(B)|-2 \) for every branch \(B \) at \(v \) in \(G \).

Theorem 1.5.[5] \(D \) is a component of \(G \) not containing \(v \) if and only if \(D+v \) is a branch at \(v \) in \(G' \).

Theorem 1.6.[5] Let \(v \) be a self vertex switching of a connected graph \(G \) and let \(B \) be a branch at \(v \) in \(G \). Then \(|V(B)| \geq 3 \).

Theorem 1.7.[6] Let \(v \in V(G) \) be a non-cut vertex of \(G \) of order \(p \geq 3 \). Then \(G' \) is connected and unicyclic if and only if either of the following holds:

a. \(G = K_2U(p-2)K_1 \) and \(v \) is one of the \(K_1 \)'s.

b. \(G \) is connected, \(G-v \) is acyclic and \(d_G(v) = |V(G)|-3 \).

c. \(G \) is connected, \(G-v \) is unicyclic and \(d_G(v) = |V(G)|-2 \).

d. \(G = DU(p-|V(D)|)K_1 \), \(G-v \) is unicyclic and \(d_G(v) = |V(D)|-2 \).

e. \(G = DU(p-|V(D)|)K_1 \), \(G-v \) is acyclic and \(d_G(v) = |V(D)|-3 \).

f. \(G = DUK_2U(p-2)K_1 \), \(G-v \) is acyclic and \(d_G(v) = |V(D)|-2 \) where \(D \neq K_1 \), \(K_2 \) is a component of \(G \) containing \(v \).

Theorem 1.8.[6] Let \(v \) be a cut vertex of a graph \(G \) of order \(p \geq 3 \). Then \(G' \) is connected and unicyclic if and only if either of the following holds:

a. \(G \) is connected, \(G-v \) is acyclic, \(d_G(v) \in \{ |V(B)|-2, |V(B)|-3 \} \) for any branch \(B \) at \(v \) in \(G \) and \(d_G(v) = |V(B)|-3 \) only for one \(B \).

b. \(G \) is connected, \(G-v \) is unicyclic, \(d_G(v) = |V(B)|-2 \), for any branch \(B \) at \(v \) in \(G \) and \(B-v \) is unicyclic for one \(B \).
c. $G = DU_KU(p-2\lfloor V(D)\rfloor)K_1$, $G-v$ is acyclic and $d_0(v) = |V(B)|-2$ for any branch B at v in D. \\
d. $G = DU[p-\lfloor V(D)\rfloor]K_1$, $G-v$ is acyclic and $d_0(v) \in \{V(B)|-2, \lfloor V(B)|-3\}$ for any branch B at v in D and $d_0(v) = |V(B)|-3$ only for one B. \\
e. $G = DU[p-\lfloor V(D)\rfloor]K_1$, $G-v$ is unicyclic, $d_0(v) = |V(B)|-2$ for any branch B at v in D and $B-v$ is unicyclic for one B, where $D \neq K_1$, K_2 is a component of G containing v.

II. CHARACTERIZATION OF G_V TO BE CONNECTED AND BICYCLIC

Let v be a vertex of a graph G. Let G' be the switching of G by v. In [5], we gave a condition on vertex v of G such that G' is connected. In [6], we characterize vertex v of G such that G' is connected and unicyclic. In this section, we characterize vertex v of G such that G' is connected and bicyclic.

Theorem 2.1. Let $v \in V(G)$ be a non-cutvertex of a graph G of order $p \geq 5$. Then G' is connected and bicyclic if and only if either of the following holds:

a. $G = 2K_2U(p-4)K_1$, and v is one of the K_1's. \\
b. G is connected, $G-v$ is unicyclic, $d_0(v) = |V(G)|-3$ and either the two non-adjacent vertices of v do not lie on the cycle of $G-v$ or one of the two non-adjacent vertices of v lie on the cycle and no vertex of the cycle lie on the path connecting the two non-adjacent vertices. \\
c. G is connected, $G-v$ is bicyclic and $d_0(v) = |V(G)|-2$. \\
d. $G = DU[p-\lfloor V(D)\rfloor]K_1$, $G-v$ is bicyclic and $d_0(v) = |V(D)|-2$. \\
e. $G = DU[p-\lfloor V(D)\rfloor]K_1$, $G-v$ is unicyclic, $d_0(v) = |V(D)|-3$ and either the two non-adjacent vertices do not lie on the cycle of $G-v$ or one of the non-adjacent vertices lie on the cycle and no vertex of the cycle lie on the path connecting the two non-adjacent vertices. \\
f. $G = DU_2K_2U(p-4)\lfloor V(D)\rfloor)K_1$, $G-v$ is acyclic and $d_0(v) = |V(D)|-2$. \\
g. $G = DU_KU(p-2)\lfloor V(D)\rfloor)K_1$, $G-v$ is acyclic and $d_0(v) = |V(D)|-3$, where $D \neq K_1, K_2$ is a component of G containing v.

Proof: Let G' be connected and bicyclic. Then $G-v$ is either acyclic or unicyclic or bicyclic. Since G' is connected using Theorem 1.3, $d_0(v) = 0$ or $d_0(v) < |V(B)|-1$ for every branch B at v in G.

If $d_0(v) = 0$, then G is disconnected. Since G' is bicyclic, we get $G = 2K_2U(p-4)K_1$, where v is one of the K_1's. Hence (a) is proved.

Now consider the case $d_0(v) \neq 0$ and $d_0(v) < |V(B)|-1$. That is, when $d_0(v) \leq |V(B)|-k, k = 2, 3, 4$ or > 4. Since v is not a cutvertex of G, B is either G or a component of G containing v according as G is connected or disconnected. We consider the following 6 cases with respect to G and $G-v$.

Case 1: G is connected and $G-v$ is acyclic.

Here $B = G$. Since v is not a cutvertex of G, $G-v$ is connected. If $d_0(v) = |V(G)|-2$, then G' is a tree, using Theorem 1.4. If $d_0(v) = |V(G)|-3$, then there exist exactly two vertices, say u and w, in G such that they are non-adjacent to v. Since $G-v$ is connected and acyclic, there exists a unique $u-w$ path in $G-v$ and hence in G' also. Hence the edge vu, the path $u-w$ and the edge wv form a unique cycle in G', which is a contradiction. If $d_0(v) = |V(G)|-4$, then there exists exactly three vertices, say u_1, u_2 and u_3, in G such that they are non-adjacent to v. Since $G-v$ is connected and acyclic, there exists unique u_1-u_2, u_2-u_3 and u_1-u_3 paths in $G-v$ and hence in G' also. Now the edge vu_1, the path u_1-u_2 and the edge wv form a cycle C_1, the edge vu_2, the path u_2-u_3 and the edge u_3w form another cycle C_2 and the edge vu_1, the path u_1-u_3 and the edge u_3w forms third cycle C_3 in G', which is a contradiction. If $d_0(v) < |V(G)|-4$, then there exist at least 4 vertices which are non-adjacent to v in G. Then by a similar argument given above, G' has at least three cycles, which is a contradiction. Hence, in this case no graph G exists.

Case 2: G is connected and $G-v$ is unicyclic.

Let C be the unique cycle in $G-v$. Then C is also a cycle of G' not containing v. Since G' is connected, using Theorem 1.3, we have $d_0(v) \leq |V(G)|-2$. If $d_0(v) = |V(G)|-2$, then there exists exactly one vertex say u, which is non-adjacent to v in G. Thus in G', v is adjacent only to u. Therefore in G', C is the unique cycle, which is a contradiction. If $d_0(v) < |V(G)|-3$, then v is non-adjacent to at least three vertices say u_1, u_2 and u_3. Since $G-v$ is connected, there exist u_1-u_2, u_2-u_3 and u_1-u_3 paths in $G-v$ and hence in G' also. Now the paths together with the edges u_1v, u_2v and u_3v form at least three cycles in G', which is a contradiction. If $d_0(v) = |V(G)|-3$, then v is non-adjacent to exactly two vertices, say u and w. We consider the following three subcases.

Subcase 2.1: u and w do not lie on the cycle C.

Since $G-v$ is connected, there exists a $u-w$ path in $G-v$ and hence in G' also. Now the edge vu, the path $u-w$ and the edge wv form another cycle C_1 in G', which contains the vertex v. Thus G' is bicyclic.

Subcase 2.2: u and w lie on the cycle C.

Then there exists exactly two $u-w$ paths, say P_1 and P_2 in G and hence, in G' also. Now the edge vu, the path P_1 and the edge wv form a cycle say C_2 in G'. Also the edge vu, the path P_2 and the edge wv form another cycle say C_3 in G'. Thus G' has three cycles, which is a contradiction.

Subcase 2.3: Either u or w lies on the cycle C.

Let us assume that u lies on C. Since $G-v$ is connected, there exists either one $u-w$ path or two $u-w$ paths and hence, there arises two subcases.

Subcase 2.3.a: One $u-w$ path in $G-v$.

Then the $u-w$ path contains no vertex of the cycle C. Now the edge vu, the $u-w$ path and the edge wv form a cycle different from C. Hence G' is bicyclic.

Subcase 2.3.b: Two $u-w$ paths in $G-v$.
Let P_3 and P_4 be the two u-w paths in $G-v$. Then vu, P_3 and vw form a cycle and vu, P_4 and vw form another cycle in G'. Hence G' has at least 3 cycles, which is a contradiction.

Hence, either the non-adjacent vertices u and w do not lie on the cycle C or one of the non-adjacent vertices u and w of v lies on C and the u-w path does not contain any vertex of C. Also $d_G(v) = |V(G)|-3$. Thus (b) is proved.

Case 3: G is connected and $G-v$ is bicyclic.

Let C_1 and C_2 be the two cycles in $G-v$. Then v does not lie on both C_1 and C_2. Also C_1 and C_2 are the cycles in G'. Since G' is connected, using Theorem 1.3, $d_G(v) \leq |V(G')|-2$. If $d_G(v) = |V(G')|-2$, then there exists exactly one vertex, say u, which is non-adjacent to v in G. Hence $G' = G-v+uv$, and therefore G' is bicyclic. If $d_G(v) < |V(G')|-2$, then there exists at least two vertices, say u_1 and u_2, which are non-adjacent to v. Since $G-v$ is connected, there exists a u_1-u_2 path in $G-v$ and hence in G' also. Now the edge vu_1, the path u_1-u_2 and the edge u_2-v together form another cycle which contains v, which is a contradiction. Thus the only possibility is $d_G(v) = |V(G')|-2$. Hence (c) is proved.

Case 4: G is disconnected and $G-v$ is bicyclic.

Clearly v is in a non-trivial component, say D, of G, since otherwise G' is not bicyclic. Also the other components of G are trivial graphs. This implies that $G = DU(p-|V(D)|)K_1$. Clearly, $G' = D'U(p-|V(D)|)(K_1+v)$. Since G' is connected and bicyclic, D' is also connected and bicyclic. Apply case-3 to D, we get $d_D(v) = |V(D')|-2$. Thus $G = DU(p-|V(D)|)K_1$ and $d_G(v) = |V(D')|-2$ and hence (d) is proved.

Case 5: G is disconnected and $G-v$ is unicyclic.

Clearly v is in a non-trivial component, say D, of G, since otherwise G' is not bicyclic. Also the other components of G are trivial graphs. This implies that $G = DU(p-|V(D)|)K_1$. Clearly, $G' = D'U(p-|V(D)|)(K_1+v)$. Since G' is connected and bicyclic, D' is also connected and bicyclic. Apply case-2 to D, we get $d_D(v) = |V(D')|-3$ and either the two non-adjacent vertices of v do not lie on the cycle of $D-v$ or one of the two non-adjacent vertices lie on the cycle and no vertex of the cycle lie on the path connecting the two non-adjacent vertices. Thus $G = DU(p-|V(D)|)K_1$ and $d_G(v) = |V(D')|-3$ and either the two non-adjacent vertices of v do not lie on the cycle of $G-v$ or one of the two non-adjacent vertices lie on the cycle and no vertex of the cycle lie on the path connecting the two non-adjacent vertices. Hence (e) is proved.

Case 6: G is disconnected and $G-v$ is acyclic.

Here v is in a non-trivial component, say D, of G. Since v is not a cutvertex of G, D is the only branch at v in G. Since G' is connected, $d_G(v) = d_D(v) \leq |V(D')|-2$, using Theorem 1.3. If $d_G(v) \leq |V(D')|-4$, then D' has more than two cycles by a similar argument as in case-1. This implies that $d_G(v) = |V(D')|-2$ or $d_G(v) = |V(D')|-3$.

When $d_G(v) = |V(D')|-2$, $d_D(v) = |V(D')|-2$. Using Theorem 1.4, D' is a tree. Since G is disconnected, G' has $k(G)$ branches at v and the branch D' is a tree where $k(G)$ is the number of components of G. Since G' is connected, bicyclic and $G-v$ is acyclic, there exists exactly two branches, say B_1 and B_2, at v in G' are unicyclic, and the other $k(G)$-3 branches are trees. Let D_1 be the component of G such that $B_1 = D_1+v$. Then $D_1 = K_2$, otherwise B_1 is not unicyclic. Using similar argument to B_2, we have $D_2 = K_2$. Also the other $k(G)$-3 components of G are trivial graphs. This implies that $G = DU2K_1U(p-4|V(D)|)K_1$ and hence (f) is proved.

When $d_G(v) = |V(D')|-3$, $d_D(v) = |V(D')|-3$. As in case-1, we can prove that D' is unicyclic. Since G' is connected, bicyclic and since D' is a unicyclic branch at v, exactly one more branch, say B_3 at v in G' is cyclic. Let D_1 be an acyclic component of G such that $B_1 = D_1+v$. Then $D_1 = K_2$. If G has a non-trivial component other than D, then G' is not bicyclic, which is a contradiction. Hence, all the other components of G are trivial graphs. Thus $G = DU2K_1U(p-2|V(D)|)K_1$ and hence (g) is proved.

Conversely, let either (a), (b), (c), (d), (e), (f) or (g) hold. From (a) to (g), we see that either $d_G(v) = 0$ or $d_G(v) < |V(B)|-1$ for the branch B at v in G. Using Theorem 1.3, G' is connected. It is noted that for the branch $B(G)$ or D at v in G, if $d_G(v) = |V(B')|-2$, then B' is a tree or bicyclic branch at v in G' according as $G-v$ is acyclic or bicyclic and if $d_G(v) = |V(B')|-3$, then B' is a unicyclic or bicyclic branch at v in G' according to $G-v$ is acyclic or unicyclic. Then each case implies that G^v is bicyclic. Hence the theorem is proved.

Theorem 2.2. Let $v \in V(G)$ be a cutvertex of a graph G of order $p \geq 5$. Then G^v is connected and bicyclic if and only if either of the following holds:

a. G is connected, $G-v$ is acyclic, $d_G(v) \in \{|V(B)|-2, |V(B)|-3\}$ for any branch B at v in G and $d_G(v) = |V(B)|-3$ exactly for two B's.

b. G is connected, $G-v$ is unicyclic, $d_G(v) \in \{|V(B)|-2, |V(B)|-3\}$ for any branch B at v in G and $d_G(v) = |V(B)|-3$ only for one $B = B^*$ and B^*-v is unicyclic.

c. G is connected, $G-v$ is bicyclic, $d_G(v) = |V(B)|-2$ for any branch B at v in G and $B-v$ is bicyclic for only one B.

d. $G = DU(p-|V(D)|)K_1$, $G-v$ is acyclic, $d_G(v) \in \{|V(B)|-2, |V(B)|-3\}$ for any branch B at v in G and $d_G(v) = |V(B)|-3$ for exactly two B's.

e. $G = DU2K_1U(p-4|V(D)|)K_1$, $G-v$ is acyclic and $d_G(v) = |V(B)|-2$ for any branch B at v in G.

f. $G = DU2K_1U(p-2|V(D)|)K_1$, $G-v$ is bicyclic, $d_G(v) \in \{|V(B)|-2, |V(B)|-3\}$ for any branch B at v in G and $d_G(v) = |V(B)|-3$ only for one B.

g. $G = DU(p-|V(D)|)K_1$, $G-v$ is unicyclic, $d_G(v) \in \{|V(B)|-2, |V(B)|-3\}$ for any branch B at v in G and $d_G(v) = |V(B)|-3$ only for one $B = B^*$ and B^*-v is unicyclic.

h. $G = DU(p-|V(D)|)K_1$, $G-v$ is bicyclic, $d_G(v) = |V(B)|-2$, for any branch B at v in G and $B-v$ is bicyclic for one B, where $D \neq K_2$, K_2 is a component of G containing v.

Proof: Let G^v be connected and bicyclic. Using Theorem 1.3, $d_G(v) = 0$ or $d_G(v) \leq |V(B')|-2$ for every branch B at v in G. Since v is a cutvertex of G, $d_G(v) \neq 0$. Therefore the only possibility is $d_G(v) \leq |N(B')|-2$ for every branch B at v in G. Since G' is bicyclic, $G-v$ is either bicyclic or unicyclic or acyclic. Here G may be either connected or disconnected and correspondingly we consider the following cases:

Case 1: G is connected.
Let k be the number of branches at v in G. Using Theorem 1.2, there are only k branches at v in G', since G' is connected. Since G' is bicyclic, there are two possibilities for the bicycle. Either exactly two branches at v in G' are unicyclic, or only one branch at v in G' is bicyclic. All other branches at v in G' are trees. Let B be any branch at v in G such that B^* is a tree in G'. Using Theorem 1.4, $d_B(v) = |V(B)|-2$.

Subcase 1.1: Exactly two branches at v in G' are unicyclic, say B_1 and B_2.

Let $B_1^* = B_1^-$ and $B_2^* = B_2^-$. Then both B_1^* and B_2^* are branches at v in G. If $d_{B_1^*}(v) < |V(B_1^*)|-3$, $i = 1, 2$, then there exists at least 3 vertices, say u_{i1}, u_{i2}, u_{i3} which are non-adjacent to v in B_i^*. Since B_i^* is connected, there exists $u_{i1} - u_{i2} - u_{i3}$ and $u_{i1} - u_{i2}$ paths in B_i^*. Now these paths and the edges $u_{i1}v, u_{i2}v$ and $u_{i3}v$ together form at least three cycles in B_i, $i = 1, 2$, which is a contradiction. Thus $d_{B_i^*}(v) = |V(B_i^*)|-3, i = 1, 2$. Also G-v is acyclic. Thus (a) is proved.

Subcase 1.2: One branch, say B_3 at v in G' is bicyclic.

Here there are two possibilities. Let $B^* = B_3^*$. Then B^* is a branch at v in G. Either v lies on a cycle of B_3. or B_3 is a tree containing v.

If v lies on the cycle of B_3, then B_3-v is unicyclic and hence G-v is unicyclic. Also $d_{B_3^*}(v) = |V(B_3^*)|-3$. Thus (b) is proved.

If v does not lie on the cycles of B_3, then B_3-v is bicyclic and hence G-v is bicyclic. Also $d_{B_3^*}(v) = |V(B_3^*)|-2$. Thus (c) is proved.

Case 2: G is disconnected and G-v is acyclic.

Let D be a component of G containing v. Since v is a cutvertex, D is neither K_1 nor K_2. Since G-v is acyclic and G' is bicyclic, there must be exactly two unicyclic branches at v in G' each contains v. Let them be B_1 and B_2. Here we consider three subcases $B_1 \neq K_3$, $B_2 \neq K_3$, $i = 1, 2$ and either $B_1 = K_3$ or $B_2 = K_3$.

Subcase 2.1: $B_i \neq K_3$, $i = 1, 2$.

Here $|B_i| \geq 4$, $i = 1, 2$. Let F_1 be a component of G not containing v such that $F_1 + v = B_i$, $i = 1, 2$. Then $|V(F_1)| \geq 3$, which implies that B_i, $i = 1, 2$ are not unicyclic. This is a contradiction to our assumption that B_i, $i = 1, 2$ are unicyclic.

Hence B_i is obtained from a branch, say B_i^* at v in G and $B_i = B_i^*$, $i = 1, 2$. Now B_i^* is connected and B_i^*-v is acyclic, $i = 1, 2$. Using Theorem 1.7(b) to B_i^* we get $d_{B_i^*}(v) = |V(B_i^*)|-3, i = 1, 2$. Let $B \neq B_i^*$, $i = 1, 2$ be a branch at v in G. Clearly $d_B(v) = |V(B)|-2$ since otherwise the branch B^* at v in G' has a cycle. Also each component of G other than D is a trivial graph. This implies that $G = DU_{K_2}U(p-4-[V(D)])|K_1$. Thus (d) is proved.

Subcase 2.2: $B_1 = K_3$, $i = 1, 2$.

Using Theorem 1.5, B_1-$v = K_2$, $i = 1, 2$ is a component of G. Since G' is bicyclic, each component other than D and K_3 is K_1. This implies that $G = DU_{K_2}U(p-4-[V(D)])|K_1$. Let B be any branch at v in G. Since G' is connected, B^* is a branch at v in G'. Since the unicyclic branches at v in G' corresponds to the component K_2 of G, the branch B^* is a tree at v in G'. Using Theorem 1.4, we get $d_B(v) = |V(B)|-2$. Thus (e) is proved.

Subcase 2.3: Either B_1 or B_2 is K_3.

Let $B_1 = K_3$ and $B_2 \neq K_3$. Using Theorem 1.5, B_1-$v = K_2$ is a component of G. Since G' is bicyclic, each component other than D and K_2 is K_1. This implies that $G = DU_{K_2}U(p-4-[V(D)])|K_1$. Since $B_2 \neq K_3$, $|B_2| \geq 4$. Let F be a component of G not containing v such that $F+v= B_2$. Then $|V(F)| \geq 3$, which implies that B_2 is not unicyclic. This is a contradiction to our assumption that B_2 is unicyclic. Hence B_2 is obtained from a branch, say B_2^* at v in G and $B_2 = B_2^*$. Now B_2^* is connected and B_2^*-v is acyclic. Using Theorem 1.7(b) to B_2^*, we get $d_{B_2^*}(v) = |V(B_2^*)|-3$. Let $B \neq B_2^*$ be a branch at v in G. Since G' is connected, B^* is a branch at v in G'. Since the unicyclic branch B_1 at v in G' corresponds to the component K_2 of G, the unicyclic branch B_2 at v in G' corresponds to a branch at v of the component D of G and $d_{B_2^*}(v) = |V(B_2^*)|-3$, the branch B^* is a tree at v in G'. Using Theorem 1.4, we get $d_B(v) = |V(B)|-2$. Thus (f) is proved.

Case 3: G is disconnected and G-v is unicyclic.

Clearly, v is in a non-trivial component, say D of G, since otherwise G' is not bicyclic. Also the other components of G are trivial graphs. This implies that $G = DU(p-|V(D)|)|K_1$ and hence $G' = D'U(p-|V(D)|)|K_1+v$. Since G' is bicyclic, D' is bicyclic. Since D is connected and D-v is unicyclic, using (b) to D, we get $d_B(v) \in \{ |(V(B)|-2, |(V(B)|-3 \}$ for any branch B at v in $G(D)$ and $d_B(v) = |V(B)|-3$ for only one $B = B^*$. Clearly B^*-v is unicyclic. Thus (g) is proved.

Case 4: G is disconnected and G-v is bicyclic.

Clearly, v is in a non-trivial component, say D of G, since otherwise G' is not bicyclic. Also the other components of G are trivial graphs. This implies that $G = DU(p-|V(D)|)|K_1$ and hence $G' = D'U(p-|V(D)|)|K_1+v$. Since G' is bicyclic, D' is bicyclic. Since D is connected and D-v is bicyclic. Using (c) to D, we get $d_B(v) = |V(B)|-2$ for any branch B at v in G and B-v is bicyclic for only one B. Thus (h) is proved.

Conversely, let either (a), (b), (c), (d), (e), (f), (g) or (h) hold. From (a) to (h), we see that $d_B(v) \leq |V(B)|-2$ for any branch B at v in G and hence using Theorem 1.3, G' is connected. Clearly each case implies that G' is bicyclic. Hence the theorem is proved.

Note 2.3.[1] Consider a cycle $C_c = (v_1, v_2, \ldots, v_c)$ (clockwise). For our convenience we denote it by $C_{(v1)}$. Identifying an end vertex of paths P_m at v_1, P_s at v_s, then $C_{(v1)}$ is denoted by $C_{(v1)}(0, \ldots, P_m, 0, \ldots, P_s, 0, \ldots, 0)$. Identifying an end vertex of paths P_m and P_s at the vertex v_1, then $C_{(v1)}$ is denoted by $C_{(v1)}(0, \ldots, P_m, P_s, 0, \ldots, 0, 0, \ldots, 0)$.

The graphs $C_{(v1)}(0, 0, P_2, P_3)$, $C_{(v1)}(0, 2P_2, P_3, 0, 0)$ and $C_{(v1)}(0, 2P_2, 2P_3, 0, P_2, P_3)$ are given in Figure 2.1.

Note 2.4.[5] Let v be a cutvertex of a connected graph G. Let B_1, B_2, \ldots, B_n be the branches with n_1, n_2, \ldots, n_n number of copies at v in G, respectively. In this case, we denote the graph G by $G(v; n_1B_1, n_2B_2, \ldots, n_nB_n)$.

III. CHARACTERIZING CONNECTED BICYCLIC GRAPHS WITH A SELF VERTEX SWITCHING

Theorem 3.1. Let G be a connected bicyclic graph of odd order $p = 2n+1$. Then G has a self vertex switching v if and only if G is either of the following: $G(v; (n-6)P_3, 2C_4, 2K_{1,3})$ or $G(v; (n-6)P_3, 2C_{4w}(P_2, 0, 0), 2P_3)$ or $G(v; (n-6)P_3, C_4, K_{1,3}, C_{3w}(P_2, 0, 0), P_3)$ or $G(v; (n-4)P_3, C_5, C_{3w}(P_2, 0, 0))$ or $G(v; (n-4)P_3, 2C_{4w}(P_2, 0, 0, 0))$ and v is adjacent to w or $G(v; (n-4)P_3, C_{4w}(P_2, 0, 0, 0), C_{3w}(2P_2, 0, 0))$ and v is non-adjacent to w in $C_{3w}(2P_2, 0, 0)$ or $G(v; (n-4)P_3, 2C_{4w}(P_3, 0, 0))$ and v is non-adjacent to the end vertex or $G(v; (n-5)P_3, C_4, K_{1,3}, C_{3w}(P_2, 0, 0, 0))$ and v is adjacent to w or $G(v; (n-5)P_3, C_4, K_{1,3}, C_{3w}(P_2, 0, 0, 0))$ and v is adjacent to w but non-adjacent to the end vertices or $G(v; (n-5)P_3, C_{3w}(P_2, 0, 0, 0), P_4, C_{4w}(P_2, 0, 0, 0))$ and v is adjacent to w or $G(v; (n-5)P_3, C_{3w}(P_2, 0, 0, 0), P_4, C_{4w}(P_2, 0, 0, 0))$ and v is adjacent to w but non-adjacent to the end vertices, where w is a vertex of degree 3 and for every branch B at v in G, $d_B(v) = 1$ or 2 according as B is a tree or unicyclic branch at v in G.

Proof: Let v be a self vertex switching of a connected bicyclic graph G. Then $G \cong G'$ and hence G has at least 5 vertices. Using Theorem 1.1, $d_G(v) = (p-1)/2 = n$. Here v may be either a cutvertex or not and correspondingly we consider the following two cases.

Case 1: v is not a cutvertex of G.

Using Theorem 2.1, either $G-v$ is unicyclic, $d_G(v) = [V(G)]-3$ and two non-adjacent vertices of v do not lie on the cycle of $G-v$ or $G-v$ is uniclic, $d_G(v) = [V(G)]-3$, one of the two non-adjacent vertices of v lie on the cycle and no vertex of the cycle lie on the path connecting the two non-adjacent vertices or $G-v$ is bicylic and $d_G(v) = [V(G)]-2$.

Subcase 1.1: $G-v$ is unicyclic, $d_G(v) = [V(G)]-3$ and the two non-adjacent vertices of v do not lie on the cycle of $G-v$.

Since G is bicyclic and $G-v$ is uniclic, v must lie on any one of the cycle, say C. Since v is not a cut vertex of G, $d_G(v) = 2 = (p-1)/2$ and hence $p = 5$. The only bicyclic graph on 5 vertices is given in Figure 3.1. This graph has no self vertex switching and so no such graph G exists.

Figure 3.1

Subcase 1.2: $G-v$ is unicyclic, $d_G(v) = [V(G)]-3$, one of the two non-adjacent vertices of v lie on the cycle and no vertex of the cycle lie on the path connecting the two non-adjacent vertices. By a similar argument given in subcase 1.1, no such graph G exists.

Subcase 1.3: $G-v$ is bicyclic and $d_G(v) = [V(G)]-2$.

Since G and $G-v$ are bicyclic, v does not lie on both cycles of G. Since $G-v$ is connected and v is not a cutvertex of G, v is an end vertex of G and hence $p = 3$. But there is no bicyclic graph on 3 vertices. Hence there is no connected bicyclic graph G such that $G-v$ is bicyclic and $d_G(v) = [V(G)]-2$.

Case 2: v is a cutvertex of G.

Using Theorem 2.2, either $G-v$ is acyclic, $d_B(v) \in \{[V(B)]-2, [V(B)]-3\}$ for any branch B at v in G and $d_B(v) = [V(B)]-3$ exactly for two B’s or $G-v$ is uniclic, $d_B(v) \in \{[V(B)]-2, [V(B)]-3\}$ for any branch B at v in G, $d_B(v) = [V(B)]-3$ only for one $B = B^*$ and $B^{*\prime}$ is uniclic or $G-v$ is bicyclic, $d_B(v) = [V(B)]-2$ for any branch B at v in G and $B-v$ is bicyclic for only one B and hence we have the following three subcases.

Subcase 2.1: $G-v$ is acyclic, $d_B(v) \in \{[V(B)]-2, [V(B)]-3\}$ for any branch B at v in G and $d_B(v) = [V(B)]-3$ exactly for two B’s.

Since $G-v$ is acyclic, v lies on both the cycles. Let B_1 and B_2 be the two cyclic branches at v in G and $d_{B_1}(v) = d_{B_2}(v) = 2$. Since G is bicyclic, any branch $B \neq B_1$ and B_2 at v in G is a tree. Using Theorem 1.6, $[V(B)] \geq 3$. Since $d_{B_1}(v) = n$, there are only $n-2$ branches at v in G. If $[V(B)] > 6$, $i = 1,2$, then $p \geq ([n-2)-2]+6+6+(n-3) = (n-4)+3+12+(n-3) = 3n-12+12n+3 = 2n+3 = p+2 > p$, which is a contradiction. If $[V(B)] = 3$, then B_1-v and B_2-v are the components of G' and hence G is disconnected, which is a contradiction. This implies that $[V(B)] = 4$ or 5, $i = 1,2$.

Subcase 2.1.a: $[V(B)] = 4, i = 1,2$.

The only uniclic graphs on 4 vertices are C_4 and $C_{3w}(P_2, 0, 0)$ and they are given in Figure 3.2. Hence B_1 is either C_4 or $C_{3w}(P_2, 0, 0)$.

Figure 3.2

The switching of a vertex v of degree 2 in C_4 and $C_{3w}(P_2, 0, 0)$ are $K_{1,3}$ and P_4, respectively. Clearly C_4 and $K_{1,3}$ and P_4.

Figure 2.3

Proceedings of the International Conference on Applied Mathematics and Theoretical Computer Science - 2013

C_{3w}(P_2, 0, 0) and P_4 are complementary switching branches at v. If B is a branch at v in G such that B ≠ B_b, B ≠ B_w and of order at least 4, then p = |V(B)| + |V(B_v)| + |V(B_{1,b})| + |V(B_{2,b})| + (number of vertices in the remaining (n-7) branches at v in G) - (n-3) ≥ 4+4+4+4+4+(n-3) = 20+3n-21+n-3 = 2n+2 > p, which is a contradiction and hence B is of order 3. Since B is a tree, B = P_3. This implies that G is either G(v; (n-6)P_3, 2C_4, 2K_{1,3}) or G(v; (n-6)P_3, 2C_4\{P_2, 0, 0\}, 2P_2) or G(v; (n-6)P_3, C_4, K_{1,3}, C_{3w}(P_2, 0, 0, P_4)) where w is a vertex of degree 3 adjacent to v in G, d_{3w}(v) = 1 or 2 according as B is not a cyclic branch or a cyclic branch at v in G.

Subcase 2.1.b: |V(B)|= 5, i.e., 1, 2.

There are only five unicyclic graphs on 5 vertices, which are given in Figure 3.3.

![Figure 3.3](image)

For any vertex v in C_3, the switching of C_4 is C_{3w}(0, P_2, P_2). Hence C_3 and C_{3w}(0, P_2, P_2) are complementary switching branches at v. The switching of a vertex v(u) of degree 2 which is adjacent to the vertex w of degree 3 in C_{3w}(P_2, 0, 0, 0) is itself. Hence C_{3w}(P_2, 0, 0, 0) is a self switching branch at v(u). The switching of a vertex v(u) of degree 2 and is non-adjacent to the vertex w of degree 3 in C_{4w}(P_2, 0, 0, 0) is C_{3w}(2P_2, 0, 0). Thus C_{4w}(P_2, 0, 0, 0) and C_{3w}(2P_2, 0, 0) are complementary switching branches at v(u). For any vertex v of degree 2 which is non-adjacent to the end vertex in C_{3w}(P_2, 0, 0), the switching is itself. For the vertex of degree 2 which is adjacent to the end vertex in C_{3w}(P_2, 0, 0), the switching is a disconnected graph. Hence C_{3w}(P_3, 0, 0) is a self switching branch at v(u). Clearly the other branches are P_1's. This implies that G is either G(v; (n-4)P_3, C_4, C_{3w}(0, P_2, P_2)) or G(v; (n-4)P_3, 2C_4\{P_2, 0, 0\}, 0) or G(v; (n-4)P_3, C_{4w}(2P_2, 0, 0, 0)) or G(v; (n-4)P_3, 2C_{4w}(P_2, 0, 0, 0)) where w is a vertex of degree 3 in G, d_{3w}(v) = 1 or 2 according as B is not a cyclic branch or a cyclic branch at v in G and v is non-adjacent to any end vertex.

Subcase 2.1.c: |V(B_v)|= 4 and |V(B_{2,b})|= 5.

By using subcase 2.1.a, we see that B_1 is either C_4 or C_{3w}(P_2, 0, 0) and using subcase 2.1.b, we see that B_2 is either C_3 or C_{4w}(P_2, 0, 0, 0) or C_{3w}(P_2, 0, 0, 0) or C_{3w}(P_2, 0, 0) or C_{3w}(0, P_2, P_2). B_1 and B_2\' are complementary switching branches at v in G. For any vertex which is non-adjacent to an end vertex of degree 2 in B_2, B_2\' is unicyclic. Since G is bicyclic and G \cong G', B_2 must be either C_{3w}(P_2, 0, 0, 0) or C_{3w}(P_2, 0, 0). Clearly the other branches are P_1's. This implies that G is either G(v; (n-5)P_3, C_4, K_{1,3}, C_{4w}(P_2, 0, 0)) and v is adjacent to w or G(v; (n-5)P_3, C_4, K_{1,3}, C_{4w}(P_2, 0, 0)) and v is adjacent to w but non-adjacent to the end vertices or G(v; (n-5)P_3, C_{3w}(P_2, 0, 0, 0)) and v is adjacent to w or G(v; (n-5)P_3, C_{3w}(P_2, 0, 0, 0)) and v is adjacent to w but non-adjacent to the end vertices where w is a vertex of degree 3 and d_{3w}(v) = 1 or 2 according as B is not a cyclic branch or a cyclic branch at v in G.

Subcase 2.2: G-v is unicyclic, d_{3w}(v) \in \{ |V(B)|-2, |V(B)|-3 \} for any branch B at v in G, d_{3w}(v) = |V(B)|-3 only for one B = B_1 and B_2\' is unicyclic.

Since G-v is unicyclic, exactly one B-v is unicyclic where B is a branch at v in G. If d_{3w}(v) = |V(B)|-3, then the branch B\' at v in G' has at least 3 cycles and hence G is not bicyclic. If d_{3w}(v) = |V(B)|-2, then the branches B\' at v in G' is unicyclic and hence G is not bicyclic. In this case there is no connected bicyclic graph exists.

Subcase 2.3: G-v is bicyclic, d_{3w}(v) = |V(B)|-2 for any branch B at v in G and B-v is bicyclic for only one B.

B-v is bicyclic and d_{3w}(v) = |V(B)|-2 implies that the branch B at v in G has at least 3 cycles and hence G is not bicyclic. Hence in this case there is no connected bicyclic graph G exists.

Thus from the above cases, we see that G is either G(v; (n-6)P_3, 2C_4, 2K_{1,3}) or G(v; (n-6)P_3, 2C_4\{P_2, 0, 0\}, 2P_2) or G(v; (n-6)P_3, C_4, K_{1,3}, C_{3w}(P_2, 0, 0, P_4)) or G(v; (n-4)P_3, 2C_4\{P_2, 0, 0\}) or G(v; (n-4)P_3, 2C_{4w}(P_2, 0, 0, 0)) and v is adjacent to w. G(v; (n-4)P_3, C_{4w}(2P_2, 0, 0, 0), 0)) and v is adjacent to w in C_{4w}(P_2, 0, 0, 0) but non-adjacent to w in C_{4w}(P_2, 0, 0, 0) or G(v; (n-4)P_3, 2C_{4w}(P_2, 0, 0, 0)) and v is adjacent to w or G(v; (n-5)P_3, C_{3w}(0, P_2, 0, 0)) and v is adjacent to w and non-adjacent to the end vertices where w is a vertex of degree 3 and d_{3w}(v) = 1 or 2 according as B is not a cyclic branch or a cyclic branch at v in G.

Conversely, let G be the graph given in the theorem. Then, clearly each case implies that v is a self vertex switching of G. This completes the proof.

Corollary 3.2 Let G be a connected bicyclic graph. Then s_{s}(G) = 0 or 1. s_{s}(G) = 1 if and only if G is either G(v; (n-6)P_3, 2C_4, 2K_{1,3}) and n \geq 6 or G(v; (n-6)P_3, 2C_{4w}(P_2, 0, 0), 2P_2) and n \geq 6 or G(v; (n-6)P_3, C_4, K_{1,3}, C_{3w}(P_2, 0, 0, P_4)) and n \geq 4 or G(v; (n-4)P_3, 2C_{4w}(P_2, 0, 0, 0)) and v is adjacent to w and n \geq 4 or G(v; (n-4)P_3, C_{4w}(2P_2, 0, 0, 0)) and v is adjacent to w in C_{4w}(2P_2, 0, 0) but non-adjacent to w in C_{4w}(P_2, 0, 0, 0) and n \geq 4 or G(v; (n-4)P_3, 2C_{4w}(P_2, 0, 0, 0)) and v is adjacent to w but non-adjacent to the end vertices with n \geq 4 or G(v; (n-5)P_3, C_{3w}(0, P_2, 0, 0)) and v is adjacent to w but non-adjacent to the end vertices and n \geq 5 or G(v; (n-5)P_3, C_{3w}(0, P_2, 0, 0)) and v is adjacent to w and n \geq 5 or G(v; (n-5)P_3, C_{3w}(0, P_2, 0, 0)) and v is adjacent to w but non-adjacent to the end vertices.

Example 3.3 The connected bicyclic graphs corresponding to n = 7 (p = 15) are given in Figure 3.4. In each graph, v is the self vertex switching.
REFERENCES