
Abstract--- This work is devoted for the design and FPGA
implementation of a 16bit Arithmetic module, which uses
Vedic Mathematics algorithms. For arithmetic multiplication
various Vedic multiplication techniques like Urdhva
Tiryakbhyam Nikhilam and Anurupye has been thoroughly
analyzed. Also Karatsuba algorithm for multiplication has
been discussed. It has been found that Urdhva Tiryakbhyam
Sutra is most efficient Sutra (Algorithm), giving minimum
delay for multiplication of all types of numbers. Using Urdhva
Tiryakbhyam, a 16x16 bit Multiplier has been designed and
using this Multiplier, a Multiply Accumulate (MAC) unit has
been designed. Then, an Arithmetic module has been designed
which employs these Vedic multiplier and MAC units for its
operation. Logic verification of these modules has been done
by using Model sim 6.5.Further, the whole design of
Arithmetic module has been realized on Xilinx Spartan 3E
FPGA kit and the output has been displayed on LCD of the kit.
The synthesis results show that the computation time for
calculating the product of 16x16 bits is 10.148 ns, while for
the MAC operation is 11.151 ns. The maximum combinational
delay for the Arithmetic module is 15.749 ns. The further
extension of this 8 x 8 Array multiplication and Urdhava
multiplication can be implemented by using reversible DKG
adder replacing with adders(H.A or F.A), and by using 16 x
16 – bit, 32 X 32 – bit are more than that. It can be dumped in
to Xilinx tools, and also finding the comparison between the
adders like power consumption, speed etc..,

Keywords--- KCM, Urdhava, Vedic Maths, Array
Multiplier, DKG Adder, FPGA

I. INTRODUCTION
ULTIPLICATION is one of the more silicon-intensive
functions, especially when implemented in

Programmable Logic. Multipliers are key components of
many high performance systems such as FIR filters,
Microprocessors, Digital Signal Processors, etc. A system's
performance is generally determined by the performance of
the multiplier, because the multiplier is generally the slowest
element in the system. Furthermore, it is generally the most
area consuming. Hence, optimizing the speed and area of the
multiplier is a major design issue. Vedic mathematics [I] is the
ancient Indian system of mathematics which mainly deals with

G. Sree Lakshmi, Assoc. Professor, Dept. of ECE, Geethanjali College of
Engineering and Technology. E-mail: gantisiriphd@gmail.com

Dr. Kaleem Fatima, Professor& HOD, Dept of ECE, Muffakamjah
College of Engineering and Technology.

 Dr.B.K. Madhavi, Professor, Dept of ECE, Kesav Memorial Institute of
Technology.

Vedic mathematical formulae and their application to various
branches of mathematics. The word 'Vedic' is derived from the
word 'Veda' which means the store-house of all knowledge.
Vedic mathematics was reconstructed from the ancient Indian
scriptures (Vedas) by Sri Bharati Krshna Tirthaji (1884-1960),
after his eight years of research on Vedas [1]. According to his
research, Vedic mathematics is mainly based on sixteen
principles or word-formulae which are termed as Sutras. This
is a very interesting field and presents some effective
algorithms which can be applied to various branches of
Engineering such as Computing and Digital Signal Processing.

II. VLSI DESIGN
The complexity of VLSI is being designed and used today

makes the manual approach to design impractical. Design
automation is the order of the day. With the rapid
technological developments in the last two decades, the status
of VLSI technology is characterized by the following

A steady increase in the size and hence the functionality of
the ICs: A steady reduction in feature size and hence increase
in the speed of operation as well as gate or transistor density.
A steady improvement in the predictability of circuit behavior.
A steady increase in the variety and size of software tools for
VLSI design.

The above developments have resulted in a proliferation of
approaches to VLSI design. Final step in the development
process, starting in the 1980s and continuing through the
present, was in the early 1980s, and continues beyond several
billion transistors as of 2009. In 1986 the first one megabit
RAM chips were introduced, which contained more than one
million transistors. Microprocessor chips passed the million
transistor mark in 1989 and the billion transistor mark in
2005.The trend continues largely unabated, with chips
introduced in 2007 containing tens of billions of memory
transistors. The complexity of VLSIs being designed and used
today makes the manual approach to design impractical.
Design automation is the order of the day. With the rapid
technological developments in the last two decades, the status
of VLSI technology is characterized by the following [Wai-
kai, Gopalan]:

•A steady increase in the size and hence the functionality
of the ICs.

•A steady reduction in feature size and hence increase in
the speed of operation as well as gate or transistor density.

•A steady improvement in the predictability of circuit
behavior.

•A steady increase in the variety and size of software tools
for VLSI design. The above developments have resulted in a

Design and Implementation of Vedic Multiplier
using Reversible Logic

G. Sree Lakshmi, Dr. Kaleem Fatima and Dr.B.K. Madhavi

M

Proceedings of Third National Conference on Latest Trends in Signal Processing, VLSI and Embedded Systems 120

ISBN 978-93-83459-63-6 © 2014 Bonfring

mailto:gantisiriphd@gmail.com
http://en.wikipedia.org/wiki/Random_Access_Memory

proliferation of approaches to VLSIdesign. We briefly
describe the procedure of automated design flow [Rabaey,
Smith MJ]. The aim is more to bring out the role of a
Hardware Description Language (HDL) in the design process.
An abstraction based model is the basis of the automated
design. The model divides the whole design cycle into various
domains. With such an abstraction through a division process
the design is carried out indifferent layers. The designer at one
layer can function without bothering about the layers above or
below. The thick horizontal lines separating the layers in the
figure signify the compartmentalization. As an example, let us
consider design at the gate level. The circuit to be designed
would be described in terms of truth tables and state tables.
With these as available inputs, he has to express them as
Boolean logic equations and realize them in terms of gates and
flip-flops. In turn, these form the inputs to the layer
immediately below.

III. ARRAY MULTIPLIER
In Array multiplier, AND gates are used for

generation of the bit-products and adders for
accumulation of generated bit products. All bit-products
are generated in parallel and collected through an array
of full adders or any other type of adders. Since the
array multiplier is having a regular structure, wiring and
the layout are done in a much simplified manner.
Therefore, among other multiplier structures, array multiplier
takes up the least amount of area. But it is also the slowest
with the latency proportional to O(Wct), where Wd is the
word length of the operand.

Example 1:

Example1 for Array multiplier 4*4

Example 2:

Example2 for Array multiplier 8*8

Instead of Ripple Carry Adder (RCA), here Carry
Save Adder (CSA) is used for adding each group of
partial product terms, because RCA is the slowest adder
among all other types of adders available. In case of
multiplier with CSA , partial product addition is carried
out in Carry save form and RCA is used only in final
addition. Here from the above example it is inferred that
partial products are generated sequentially, which reduces
the speed of the multiplier. However the structure of the
multiplier is regular.

Fig. 1: Array Multiplier 4 * 4 using CSA Hardware Architecture

In this method, for the first 3 numbers a row of full adder
are used. Then a row of full adder is added for each additional
number. The final results, in the form of two numbers sum and
carry, are then summed up with a carry propagate adder or any
other adder. An example 4 numbers addition is shown in Fig
1.There are many cases where it is desired to add more than
two numbers together. The straight forward way of adding

together m numbers (all n bits wide) is to add the first two,
then add that sum to the next, and so on. This requires a total
of m − 1 additions, for a total gate delay of (assuming look
ahead carry adders). Instead, a tree of adders can be formed,
taking only gate delays. Using carry save addition, the delay
can be reduced further still. The idea is to take 3 numbers that
we want to add together, x + y + z, and convert it into 2

Proceedings of Third National Conference on Latest Trends in Signal Processing, VLSI and Embedded Systems 121

ISBN 978-93-83459-63-6 © 2014 Bonfring

numbers c + s such that x + y + z = c + s, and do this in time.
The reason why addition cannot be performed in time is
because the carry information must be propagated. In carry
save addition, we refrain from directly passing on the carry
information until the very last step. We will first illustrate the
general concept with a base 10 example. To add three numbers
by hand, we typically align the three operands, and then
proceed column by column in the same fashion that we
perform addition with two numbers. The three digits in a row
are added, and any overflow goes into the next column.
Observe that when there is some non-zero carry, we are really
adding four digits (the digits of x ,y and z, plus the carry).In
many cases we need to add several operands together, carry
save adder are ideal for this type of addition. A carry save
adder consists of stand-alone full adders, and carries out a
number of partial additions. The principal idea is that the carry
has a higher power of 2 and thus is routed to the next column.
Doing addition with carry save adder saves time and logic.In
this method, for the first 7 numbers a row of full adder are
used. Then a row of full adder is added for each additional
number. The final results, in the form of two numbers sum and
carry, are then summed up with a carry propagate adder or any
other adder.

IV. URDHAVA MULTIPLIER
In Urdhava Tiryakbhyam is a Sanskrit word which means

vertically and crosswire in English. The method is a general
multiplication formula applicable to all cases of
multiplication. It is based on a novel concept through which
all partial products are generated concurrently. Fig.
Demonstrates a 4 x 4 binary multiplication using this method.
The method can be generalized for any N x N bit
multiplication. This type of multiplier is independent of the
clock frequency of the processor because the partial products
and their sums are calculated in parallel. The net advantage is
that it reduces the need of microprocessors to operate at
increasingly higher clock frequencies. As the operating
frequency of a processor increases the number of switching
instances also increases. This results more power consumption
and also dissipation in the form of heat which results in higher
device operating temperatures. Another advantage of Urdhava
Tiryakbhyam multiplier is its scalability T.

Fig. 2: Line Diagram for Urdhava Multiplication

The processing power can easily be increased by
increasing the input and output data bus widths since it has a
regular structure. Due to its regular structure, it can be easily
layout in a silicon chip and also consumes optimum area. As

the number of input bits increase, gate delay and area increase
very slowly as compared to other multipliers. Therefore
Urdhava Tiryakbhyam multiplier is time, space and power
efficient.

Fig. 3: Multiplication of two 4 bit Numbers using Urdhava

Tiryakbhyam Method

Example 3:

Example 3: For the Multiplication of two 4 bit Numbers using

Urdhava Tiryakbhyam Method
The line diagram in fig. 3 illustrates the algorithm for

multiplying two 4-bit binary numbers a3, a2, a1, a0 and b3,
b2, b1, b0. The procedure is divided into 7 steps and each step
generates partial products. Initially as shown in step 1 of fig.
2, the least significant bit (LSB) of the multiplier is multiplied
with least significant bit of the multiplicand (vertical
multiplication). This result forms the LSB of the product. In
step 2 next higher bit of the multiplier is multiplied with the
LSB of the multiplicand and the LSB of the multiplier is
multiplied with the next higher bit of the multiplicand
(crosswire multiplication). These two partial products are
added and the LSB of the sum is the next higher bit of the
final product and the remaining bits are carried to the next
step. For example, if in some intermediate step, we get the
result as 1101, then 1 will act as the result bit(referred as rn)
and 110 as the carry (referred as cn). Therefore cn may be a
multi-bit number. Similarly other steps are carried out as
indicated by the line diagram. The important feature is that all
the partial products and their sums for every step can be
calculated in parallel. Thus every step in fig. 3.1 has a
corresponding expression as follows:

r0=a0b0. (1)
c1r1=a1b0+a0b1. (2)
c2r2=c1+a2b0+a1b1 + a0b2. (3)

Proceedings of Third National Conference on Latest Trends in Signal Processing, VLSI and Embedded Systems 122

ISBN 978-93-83459-63-6 © 2014 Bonfring

c3r3=c2+a3b0+a2b1 + a1b2 + a0b3. (4)
c4r4=c3+a3b1+a2b2 + a1b3. (5)
c5r5=c4+a3b2+a2b3. (6)
c6r6=c5+a3b3 (7)
With c6r6r5r4r3r2r1r0 being the final product. Hence this

is the general mathematical formula applicable to all cases of
multiplication and its hardware architecture is shown in fig. 3.
In order to multiply two 8-bit numbers using 4-bit multiplier
we proceed as follows.

 Consider two 8 bit numbers denoted as AHAL and BHBL
where AH and BH corresponds to the most significant 4 bits,

AL and BL are the least significant 4 bits of an 8-bit number.
When the numbers are multiplied multiplied according to
Urdhava Tiryakbhyam (vertically and crosswire) method, we
get,
AH AL
BH BL

(AH x BH) + (AH x BL + BH x AL) + (AL x BL).

The digits on the two ends of the line are multiplied and
the result is added with the previous carry. When there are
more lines in one step, all the results are added to the previous
carry.

Fig. 4: Hardware Architecture of 4 X 4 Urdhava Tiryakbhyam Multiplier using Reversible DKG Added

Thus we need four 4-bit multipliers and two adders to add
the partial products and 4-bit intermediate carry generated.
Since product of a 4 x 4 multiplier is 8 bits long, in every step
the least significant 4 bits correspond to the product and the
remaining 4 bits are carried to the next step. This process
continues for 3 steps in this case. Similarly, 16 bit multiplier
has four 8 x 8 multiplier and two 16 bit adders with 8 bit carry.
Therefore we see that the multiplier is highly modular in
nature. Hence it leads to regularity and scalability of the
multiplier layout. The multiplier architecture is based on this -
Urdhava tiryakbhyam sutra. The advantage of this algorithm is
that partial products and their sums are calculated in parallel.
This parallelism makes the multiplier clock independent. The
other main advantage of this multiplier as compared to other
multipliers is its regularity. Due to this modular nature the lay
out design will be easy. The architecture can be explained with
two eight bit numbers i.e. the multiplier and multiplicand are
eight bit numbers. The multiplicand and the multiplier are split
into four bit blocks. The four bit blocks are again divided into
two bit multiplier blocks. According to the algorithm the 8 x 8
(AH x BH) bit multiplication will be as follows.

 AH = AHH - AHL, BH = BHH - BHL
 AH=AH7AH6AH5AH4AH3AH2AH1AH0,
 BH = BH7BH6BH5BH4BH3BH2BH1BH0,
 AHH = AH7AH6AH5AH4,
 AHL = AH3AH2AH1AH0
 BHH = BH7BH6BH5BH4, BHL = BH3BH2BH1BH0

Fig. 5: Multiplication of two 8 bit Numbers using Urdhava

Tiryakbhyam Method
By the algorithm, the product can be obtained as follows.

Product of AH x BH = AHL x BHL + (AHH x BHL + AHL x
BHH) + AHH x BHH

Thus 8 x 8 multiplications can be decomposed into 2 x 2
multiplication units. By using this algorithm any complex N x
N multiplication can be implemented using the basic 2 x 2
multiplier units.

Fig. 6: Hardware Realization of 2x2 block

Here a0=AL, a1=AH;
b0=BL, b1=BH;

For Multiplier, first the basic blocks, that are the 2x2 bit

Proceedings of Third National Conference on Latest Trends in Signal Processing, VLSI and Embedded Systems 123

ISBN 978-93-83459-63-6 © 2014 Bonfring

multipliers have been made and then, using these blocks, 4x4
block has been made and then using this 4x4 block, 8x8 bit
block, 16x16 bit block. Urdhava Tiryakbhyam Sutra is a
general multiplication formula applicable to all cases of
multiplication. It means “Vertically and Crosswise”. The
digits on the two ends of the line are multiplied and the result
is added with the previous carry. When there are more lines in
one step, all the results are added to the previous carry. The
least significant digit of the number thus obtained acts as one
of the result digits and the rest act as the carry for the next
step. Initially the carry is taken to be as zero. The line diagram
for multiplication of two 4-bit numbers is as shown in Fig.

8 X 8 Bit Multiplication Using Urdhava Triyakbhyam
(Vertically and crosswise) for two Binary numbers

Consider two binary numbers A and B of 8 bits as
respectively

 A = A7A6A5A4 A3A2A1A0
 (X1) (X0)
 B= B7B6B5B4 B3B2B1B0

 (Y1) (Y0)

Which can be viewed as two four bit numbers each, i.e. A
can be viewed as X1 X0 and B can be viewed as Y1 Y0
respectively, as shown above, thus the multiplication can be
written as

 X1 X0
 *
 Y1 Y0

 EDC
Where, CP= C = X0Y0
 CP= A = X1Y0
 CP = B = X0Y1
 CP= D = A+B
 CP= E = X1Y1
here CP= Cross Product

Thus, A*B= EDC, is achieved using Urdhava
Triyakbhyam (Vertically and crosswise) sutra.

Fig.7: Hardware Architecture of 8 X 8 Urdhava Tiryakbhyam
Multiplier

Now we will extend this Sutra to binary number system.
For the multiplication algorithm, let us consider the
multiplication of two 8 bit binary numbers
A7A6A5A4A3A2A1A0 and B7B6B5B4B3B2B1B0. As the
result of this multiplication would be more than 8 bits, we
express it as …R7R6R5R4R3R2R1R0. As in the last case, the
digits on the both sides of the line are multiplied and added
with the carry from the previous step. This generates one of

the bits of the result and a carry. This carry is added in the
next step and hence the process goes on. If more than one lines
are there in one step, all the results are added to the previous
carry. In each step, least significant bit acts as the result bit
and all the other bits act as carry. For example, if in some
intermediate step we will get 011, then I will act as result bit
and 01 as the carry.

V. REVERSIBLE LOGIC GATES
There exist many reversible gates in the literature. Among

them 2*2 Feynman gate, 3*3 Fredkin gate, 3*3 Toffoli and
3*3 Peres is the most referred. The detailed cost of a
reversible gate depends on any particular realization of
quantum logic. Generally, the cost is calculated as a total sum
of 2*2 quantum primitives used. The cost of Toffoli gate is
exactly the same as the cost of Fredkin gate and is 5. The only
cheapest quantum realization of a complete (universal) 3*3
reversible gate is Peres gate and its cost is 4.

 Controlled NOT (CNOT) gate is an example for a 2*2
gate. The Reversible 2*2 gate with Quantum Cost of one
having mapping input (A, B) to output (P = A, Q = A B)

Figure 8: 2*2 Feynman gate

Reversible 3*3 gate maps inputs (A, B, C) to outputs
(P=A, Q=A'B+AC, R=AB+A'C) having Quantum cost of 5
and it requires two dotted rectangles, is equivalent to a 2*2
Feynman gate with Quantum cost of each dotted rectangle is
1, 1 V and 2 CNOT gates.

Figure 9: 3*3 Fredkin Gate

The 3*3 Reversible gate with three inputs and three
outputs. The inputs (A, B, C) mapped to the outputs (P=A,
Q=B, R=A.BC)

Figure 10: 3*3 Toffoli Gate

The three inputs and three outputs i.e., 3*3 reversible gate
having inputs (A, B, C) mapping to outputs (P = A, Q = A B,
R = (A.B) C). Since it requires 2 V+, 1 V and 1 CNOT gate, it
has the Quantum cost of 4.

Proceedings of Third National Conference on Latest Trends in Signal Processing, VLSI and Embedded Systems 124

ISBN 978-93-83459-63-6 © 2014 Bonfring

Figure 11: 3*3 Peres gate

Figure 12: 4*4 HNG gate

Reversible DKG Gate:
Reversible DKG gate has 4 inputs and 4 outputs, so it is

called Reversible 4*4 DKG gate, A 4* 4 reversible DKG gate
that can work singly as a reversible Full adder and a reversible
Full subtractor is shown in Fig. It can be verified that input
pattern corresponding to a particular output pattern can be
uniquely determined. If input A=0, the proposed gate works as
a reversible Full adder, and if input A=1, then it works as a
reversible Full subtractor. It has been proved that a reversible
full-adder circuit requires at least two garbage outputs to make
the output combinations unique figures.

Figure 13: Reversible DKG gate

DKG gate with inputs A, B, C, D and outputs are P, Q, R,
S. This gate is known as DKG gate. Figure 8 shows the DKG
gate with 4*4 inputs and outputs. The binary Full
adder/subtractor is capable of handling one bit of each input
along with a carry in/borrow in generated as a carry out/
borrow from addition of previous lower order bit position. If
two binary numbers each consisting of n bits are to be added
or subtracted, then n binary full adders/subtractors are to be
cascaded.

Figure 14: DKG gate implemented as Full adder

Figure 15: DKG gate implemented as Full subtractor

The binary Full adder/subtractor is capable of handling one
bit of each input along with a carry in/borrow in generated as a
carry out/ borrow from addition of previous lower order bit
position. If two binary numbers each consisting of n bits are to
be added or subtracted, then n binary full adders/subtractors
are to be cascaded. A Parallel adder/subtractor is an
interconnection of full adders/subtractors and inputs are
simultaneously applied. The carry/borrow generated at a stage
is propagated to the next stage. Thus, delay is more in such
type of adders/subtractors. A 4 bit reversible parallel
adder/subtractor is implemented using the reversible DKG
gate and shown in Fig 10a. When the control input A=0, the
circuit acts as a parallel adder, produces a 4 bit sum and a
carry out, as shown in Fig 10b. If the control input A=1, the
circuit acts as a parallel subtractor, produces a 4 bit difference
and borrow out, as shown in Fig. The same design can be
extended to n bits.

VI. PROPOSED MULTIPLIER
The proposed method is based on ROM approach

however both the inputs for the multiplier can be
variables. In this proposed method a ROM is used for
storing the squares of numbers as compared to KCM
where the multiples are stored.

Operation
To find (a x b), first we have to find whether the

difference between 'a' and 'b' is odd or even. Based on the
difference, the product is calculated.

 In case of Even Difference
Result of Multiplication= [Average]^2- [Deviation]^ 2

 In case of Odd Difference
 Result of Multiplication = [Average x (Average +

1)] -[Deviation x (Deviation+ I)]
Where Average = [(a+b)/2]

Deviation = [Average – smallest (a, b)]

Example 4 (Even difference) and Example 5 (Odd
difference) depict the multiplication process. Thus the two
variable multiplication is performed by averaging, squaring
and subtraction. To find the average[(a+b)/2], which
involves division by 2 is performed by right shifting the
sum by one bit.

Proceedings of Third National Conference on Latest Trends in Signal Processing, VLSI and Embedded Systems 125

ISBN 978-93-83459-63-6 © 2014 Bonfring

Fig. 16: Block Diagram for Proposed Multiplier
 If the squares of the numbers are stored in a ROM,

the result can be instantaneously calculated. However, in
case of Odd difference, the process is different as the
average is a floating point number. In order to handle
floating point arithmetic, Ekadikena Purvena - the Vedic
Sutra which is used to find the square of numbers end
with 5 is applied. Example 4 illustrates this. In this case,
instead of squaring the average and deviation, [Average x
(Average + 1)] - [Deviation x (Deviation+ I)] is used.
However, instead of performing the multiplications, the
same ROM is used and using equation the result of
multiplication is obtained.

n(n+l) = (n2+n) ... (10)

Here n2 is obtained from the ROM and is added
with the address which is equal to n(n+l)

Example 4:
16 x 12 = 192

1) Find the difference between (16-12) = 4 ----Even
Number

2) For Even Difference, Product = [Average]^2-
[Deviation]^2

i. Average = [(a+b)/2] = [(16+12)12] = [28/2] = 14

ii. Smallest (a, b) = smallest (l6,12) =12

iii. Deviation = Average - Smallest (a, b) = 14 -12 =2
3) Product = 142- 22= 196 - 4 = 192.

Example 5:
15 x 12 = 180
I) Find the difference between (15-12)=3 -7 Odd Number

2) For Odd Number Difference find the Average and
Deviation.

i. Average = [(a+b)/2] = [(12+15)/2] = 13.5

ii. Deviation = [Average – smallest (a, b)] =

[12.5 - smallest(l3,12)] = [13.5 - 12] = 1.5

3) Product = (l3xI4) - (lx2) = 182 - 2 =180.

VII. SIMULATION RESULTS AND TABLES

Fig. 17: Speed Comparison for (8x8)

Fig. 18: Speed Comparison for DKG (8*8)

• Simulation Result
The comparison is carried out in between the reversible

and conventional logic gates by using XILINX 9.1and
program is written in VERILOG language. . In reversible logic
we use DKG and TSG gates for both adder/subtractor as it has
low power consumption and less garbage output as already
discussed in the section3. The comparison is carried out for
the four operand four bit adder/subtractor in reversible and
conventional gates.

Proceedings of Third National Conference on Latest Trends in Signal Processing, VLSI and Embedded Systems 126

ISBN 978-93-83459-63-6 © 2014 Bonfring

Fig. 19: 8 Bit Array Multiplier using DKG

Fig. 20: 8 Bit Urdhava Multiplier using DKG

Fig. 21: 8 Bit Proposed Multiplier

Proceedings of Third National Conference on Latest Trends in Signal Processing, VLSI and Embedded Systems 127

ISBN 978-93-83459-63-6 © 2014 Bonfring

Table 1: Results for 8x8 Multiplier
Criterion Array Multiplier Urdhava Multiplier

Area 126 180
Total Combinational Functions 163 149

Dedicated Logic Registers 48 48

Total Memory Bits(Kb) 0 0
Transitions 1557 1501

Speed(After Pipelining)(MHz) 137.46 142.67

Power 100 90
temperature 27c 27c

Table 2: Results For DKG 8*8 Multiplier
Criterion Array Multiplier Urdhava Multiplier

Area 126 180
Total Combinational Functions 158 146

Dedicated Logic Registers 46 46
Total Memory Bits(Kb) 0 0

Transitions 1551 1547
Speed(After Pipelining)(MHz) 139.35 145.03

Total Power 90 82
temperature 27c 27c

VIII. CONCLUSION
Thus the proposed multiplier provides higher performance

for higher order bit multiplication. In the proposed multiplier
for higher order bit multiplication i.e. for 16x16 and more, the
multiplier is realized by instantiating the lower order bit
multipliers like 8x8. This is mainly due to memory constraints.
Effective memory implementation and deployment of memory
compression algorithms can yield even better results.

REFERENCE
[1] Bharati Krshna Tirthaji, Vedic Mathematics. Delhi: Motilal Banarsidass

Publishers, 1965.
[2] Harpreet Singh Dhillon and Abhijit Mitra "A Digital Multiplier

Architecture using Urdhava Tiryakbhyam Sutra oj Vedic Mathematics"
IEEE Conference Proceedings, 2008.

[3] Asmita Haveliya "A Novel Design ./i)r High Speed Multiplier .fi)r
Digital Signal Processing Applications (Ancient Indian Vedic
mathematics approach)" International Journal of Technology and
Engineering System(IJTES): Jan - March 2011- Vo12 .Nol

[4] P.D. Chidgupkar and M.T. Karad, "The Implementation oj Vedic
Algorithms in Digital Signal Processing", Global J. oj /c'ngg. /c'du., vol.
8, no.2, pp. 153-158, 2004.

[5] J. Bhasker, "Verilog HDL Primer" BS P Publishers, 2003.
[6] M. Ramalatha, K. Deena Dayalan,P. Dharani, S. Deborah Priya,"High

Speed Jc'nergy ElJzcient ALU Design using Vedic Multiplication
Techniques", ACTEA 2009, Zouk Mosbeh, Lebanon.

[7] Landauer, R., 1961. Irreversibility and heat generation in the computing
process, IBM J. Research and Development, 5 (3): 183-191.

[8] Thaplyal, H. and M.B. Srinivas, 2006. Novel Reversible Multiplier
Architecture Using Reversible TSG gate. IEEE international Conference
on Computer Systems and Applications, pp: 100-103.

[9] Shams, M., M. Haghparast and K. Navi, 2008. Novel Reversible
Multiplier Circuit in Nanotechnology. World Appl. Sci. J., 3 (5): 806-
810.

[10] D. MASLOV, G.W. DUECK, AND D.M. MILLER, Synthesis of
Fredkin-Toffoli Reversible Networks, IEEE Trans. VLSI Systems, 13(6),
pp. 765-769, 2005.

[11] C.H. Bennett, “Logical Reversibility of Computation”, IBM J. Research
and Development, pp. 525-532, November 1973.

[12] Himanshu Thapliyal, M.B Srinivas and Hamid R. Arabnia, "A
Reversible Version of 4 x 4 Bit Array Multiplier With Minimum Gates
and Garbage Outputs", The 2005 International Conference on Embedded
System and Applications(ESA'05), Las Vegas, U.S.A, June 2005,pp-
106-114.

[13] Saiful Islam and Rafiqul Islam., 2005. Minimization of Reversible
Adder Circuits. Asian Journal of Information Technology 4 (12): 1146-
1151.

[14] Fredkin, E. and Toffoli, T. (1982). Conservative logic. Int. Journal of
Theoretical Physics, 21, 219–253.

[15] Md. Saiful Islam, Md. Rafiqul Islam, Muhammad Rezaul Karim,
Abdullah Al Mahmud and Hafiz Md. Hasan Babu, “Minimization of
Adder Circuits and Variable Block Carry Skip Logic using Reversible
Gates”, In Proc. of 7th International Conference on Computer and
Information Technology, ICCIT 2004, Brac University, Dhaka,
Bangladesh, 26-28 December, 2004, pp. 378- 383.

Proceedings of Third National Conference on Latest Trends in Signal Processing, VLSI and Embedded Systems 128

ISBN 978-93-83459-63-6 © 2014 Bonfring

	Introduction
	VLSI Design
	Array Multiplier
	Urdhava Multiplier
	Reversible Logic Gates
	Proposed Multiplier
	Simulation Results and Tables
	Conclusion
	Reference

