
Abstract---  This work is devoted for the design and FPGA 
implementation of a 16bit Arithmetic module, which uses 
Vedic Mathematics algorithms. For arithmetic multiplication 
various Vedic multiplication techniques like Urdhva 
Tiryakbhyam Nikhilam and Anurupye has been thoroughly 
analyzed. Also Karatsuba algorithm for multiplication has 
been discussed. It has been found that Urdhva Tiryakbhyam 
Sutra is most efficient Sutra (Algorithm), giving minimum 
delay for multiplication of all types of numbers. Using Urdhva 
Tiryakbhyam, a 16x16 bit Multiplier has been designed and 
using this Multiplier, a Multiply Accumulate (MAC) unit has 
been designed. Then, an Arithmetic module has been designed 
which employs these Vedic multiplier and MAC units for its 
operation. Logic verification of these modules has been done 
by using Model sim 6.5.Further, the whole design of 
Arithmetic module has been realized on Xilinx Spartan 3E 
FPGA kit and the output has been displayed on LCD of the kit. 
The synthesis results show that the computation time for 
calculating the product of 16x16 bits is 10.148 ns, while for 
the MAC operation is 11.151 ns. The maximum combinational 
delay for the Arithmetic module is 15.749 ns. The further 
extension of this 8 x 8 Array multiplication and Urdhava 
multiplication can be implemented by using reversible DKG 
adder replacing with adders(H.A or F.A), and by using 16 x 
16 – bit, 32 X 32 – bit are more than that. It can be dumped in 
to Xilinx tools, and also finding the comparison between the 
adders like power consumption, speed etc.., 

Keywords--- KCM, Urdhava, Vedic Maths, Array 
Multiplier, DKG Adder, FPGA 

 

I. INTRODUCTION 
ULTIPLICATION is one of the more silicon-intensive 
functions, especially when implemented in 

Programmable Logic. Multipliers are key components of 
many high performance systems such as FIR filters, 
Microprocessors, Digital Signal Processors, etc. A system's 
performance is generally determined by the performance of 
the multiplier, because the multiplier is generally the slowest 
element in the system. Furthermore, it is generally the most 
area consuming. Hence, optimizing the speed and area of the 
multiplier is a major design issue. Vedic mathematics [I] is the 
ancient Indian system of mathematics which mainly deals with 

G. Sree Lakshmi, Assoc. Professor, Dept. of ECE, Geethanjali College of 
Engineering and Technology. E-mail: gantisiriphd@gmail.com        

Dr. Kaleem Fatima, Professor& HOD, Dept of ECE, Muffakamjah 
College of Engineering and Technology. 

 Dr.B.K. Madhavi, Professor, Dept of ECE, Kesav Memorial Institute of 
Technology. 

Vedic mathematical formulae and their application to various 
branches of mathematics. The word 'Vedic' is derived from the 
word 'Veda' which means the store-house of all knowledge. 
Vedic mathematics was reconstructed from the ancient Indian 
scriptures (Vedas) by Sri Bharati Krshna Tirthaji (1884-1960), 
after his eight years of research on Vedas [1]. According to his 
research, Vedic mathematics is mainly based on sixteen 
principles or word-formulae which are termed as Sutras. This 
is a very interesting field and presents some effective 
algorithms which can be applied to various branches of 
Engineering such as Computing and Digital Signal Processing. 

II. VLSI DESIGN 
The complexity of VLSI is being designed and used today 

makes the manual approach to design impractical. Design 
automation is the order of the day. With the rapid 
technological developments in the last two decades, the status 
of VLSI technology is characterized by the following 

A steady increase in the size and hence the functionality of 
the ICs: A steady reduction in feature size and hence increase 
in the speed of operation as well as gate or transistor density. 
A steady improvement in the predictability of circuit behavior. 
A steady increase in the variety and size of software tools for 
VLSI design. 

The above developments have resulted in a proliferation of 
approaches to VLSI design. Final step in the development 
process, starting in the 1980s and continuing through the 
present, was in the early 1980s, and continues beyond several 
billion transistors as of 2009. In 1986 the first one megabit 
RAM chips were introduced, which contained more than one 
million transistors. Microprocessor chips passed the million 
transistor mark in 1989 and the billion transistor mark in 
2005.The trend continues largely unabated, with chips 
introduced in 2007 containing tens of billions of memory 
transistors. The complexity of VLSIs being designed and used 
today makes the manual approach to design impractical. 
Design automation is the order of the day. With the rapid 
technological developments in the last two decades, the status 
of VLSI technology is characterized by the following [Wai-
kai, Gopalan]: 

•A steady increase in the size and hence the functionality 
of the ICs. 

•A steady reduction in feature size and hence increase in 
the speed of operation as well as gate or transistor density. 

•A steady improvement in the predictability of circuit 
behavior. 

•A steady increase in the variety and size of software tools 
for VLSI design. The above developments have resulted in a 
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proliferation of approaches to VLSIdesign. We briefly 
describe the procedure of automated design flow [Rabaey, 
Smith MJ]. The aim is more to bring out the role of a 
Hardware Description Language (HDL) in the design process. 
An abstraction based model is the basis of the automated 
design. The model divides the whole design cycle into various 
domains. With such an abstraction through a division process 
the design is carried out indifferent layers. The designer at one 
layer can function without bothering about the layers above or 
below. The thick horizontal lines separating the layers in the 
figure signify the compartmentalization. As an example, let us 
consider design at the gate level. The circuit to be designed 
would be described in terms of truth tables and state tables. 
With these as available inputs, he has to express them as 
Boolean logic equations and realize them in terms of gates and 
flip-flops. In turn, these form the inputs to the layer 
immediately below.  

III. ARRAY MULTIPLIER 
In  Array  multiplier,  AND  gates  are  used for  

generation  of  the  bit-products  and  adders  for  
accumulation of  generated  bit  products.  All  bit-products  
are  generated  in  parallel  and  collected  through  an  array  
of  full  adders  or  any  other  type  of  adders.  Since  the  
array  multiplier  is  having  a  regular  structure,  wiring  and  
the  layout  are  done  in  a  much simplified  manner.  
Therefore, among other multiplier structures, array multiplier 
takes up the least amount of area.  But  it  is  also  the  slowest  
with  the  latency  proportional  to O(Wct),  where  Wd  is  the  
word  length  of  the  operand. 

 

 
 

 

Example 1:   

 
Example1 for Array multiplier 4*4 

Example 2:   

 
Example2 for Array multiplier 8*8 

Instead  of  Ripple  Carry  Adder  (RCA),  here  Carry  
Save Adder  (CSA)  is  used  for  adding  each  group  of  
partial product  terms,  because  RCA  is  the  slowest  adder  
among  all other  types  of  adders  available.  In  case  of  
multiplier  with  CSA ,  partial  product  addition  is  carried  
out  in  Carry  save form and RCA is used only in final  
addition. Here  from  the  above  example  it  is  inferred  that  
partial products  are  generated  sequentially,  which  reduces  
the  speed  of  the  multiplier.  However the structure of the 
multiplier is regular. 

 
Fig. 1: Array Multiplier 4 * 4 using CSA Hardware Architecture 

In this method, for the first 3 numbers a row of full adder 
are used. Then a row of full adder is added for each additional 
number. The final results, in the form of two numbers sum and 
carry, are then summed up with a carry propagate adder or any 
other adder. An example 4 numbers addition is shown in Fig 
1.There are many cases where it is desired to add more than 
two numbers together. The straight forward way of adding 

together m numbers (all n bits wide) is to add the first two, 
then add that sum to the next, and so on. This requires a total 
of m − 1 additions, for a total gate delay of (assuming look 
ahead carry adders). Instead, a tree of adders can be formed, 
taking only gate delays. Using carry save addition, the delay 
can be reduced further still. The idea is to take 3 numbers that 
we want to add together, x + y + z, and convert it into 2 
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numbers c + s such that x + y + z = c + s, and do this in time. 
The reason why addition cannot be performed in time is 
because the carry information must be propagated. In carry 
save addition, we refrain from directly passing on the carry 
information until the very last step. We will first illustrate the 
general concept with a base 10 example. To add three numbers 
by hand, we typically align the three operands, and then 
proceed column by column in the same fashion that we 
perform addition with two numbers. The three digits in a row 
are added, and any overflow goes into the next column. 
Observe that when there is some non-zero carry, we are really 
adding four digits (the digits of x ,y and z, plus the carry).In 
many cases we need to add several operands together, carry 
save adder are ideal for this type of addition.  A carry save 
adder consists of stand-alone full adders, and carries out a 
number of partial additions. The principal idea is that the carry 
has a higher power of 2 and thus is routed to the next column. 
Doing addition with carry save adder saves time and logic.In 
this method, for the first 7 numbers a row of full adder are 
used. Then a row of full adder is added for each additional 
number. The final results, in the form of two numbers sum and 
carry, are then summed up with a carry propagate adder or any 
other adder. 

IV. URDHAVA MULTIPLIER 
In Urdhava Tiryakbhyam is a Sanskrit word which means 

vertically and crosswire in English. The method is a general 
multiplication formula applicable to all cases of 
multiplication. It is based on a novel concept through which 
all partial products are generated concurrently. Fig.  
Demonstrates a 4 x 4 binary multiplication using this method. 
The method can be generalized for any N x N bit 
multiplication. This type of multiplier is independent of the 
clock frequency of the processor because the partial products 
and their sums are calculated in parallel. The net advantage is 
that it reduces the need of microprocessors to operate at 
increasingly higher clock frequencies. As the operating 
frequency of a processor increases the number of switching 
instances also increases. This results more power consumption 
and also dissipation in the form of heat which results in higher 
device operating temperatures. Another advantage of Urdhava 
Tiryakbhyam multiplier is its scalability T. 

 
Fig. 2: Line Diagram for Urdhava Multiplication 

The processing power can easily be increased by 
increasing the input and output data bus widths since it has a 
regular structure. Due to its regular structure, it can be easily 
layout in a silicon chip and also consumes optimum area. As 

the number of input bits increase, gate delay and area increase 
very slowly as compared to other multipliers. Therefore 
Urdhava Tiryakbhyam multiplier is time, space and power 
efficient.  

 
Fig. 3: Multiplication of two 4 bit Numbers using Urdhava 

Tiryakbhyam Method 
 

Example 3:   

 
Example 3: For the Multiplication of two 4 bit Numbers using 

Urdhava Tiryakbhyam Method 
The line diagram in fig. 3 illustrates the algorithm for 

multiplying two 4-bit binary numbers a3, a2, a1, a0 and b3, 
b2, b1, b0. The procedure is divided into 7 steps and each  step 
generates partial products. Initially as shown in step 1 of fig. 
2, the least significant bit (LSB) of the multiplier is multiplied 
with least significant bit of the multiplicand (vertical 
multiplication). This result forms the LSB of the product. In 
step 2 next higher bit of the multiplier is multiplied with the 
LSB of the multiplicand and the LSB of the multiplier is 
multiplied with the next higher bit of the multiplicand 
(crosswire multiplication). These two partial products are 
added and the LSB of the sum is the next higher bit of the 
final product and the remaining bits are carried to the next 
step. For example, if in some intermediate step, we get the 
result as 1101, then 1 will act as the result bit(referred as rn) 
and 110 as the carry (referred as cn). Therefore cn may be a 
multi-bit number. Similarly other steps are carried out as 
indicated by the line diagram. The important feature is that all 
the partial products and their sums for every step can be 
calculated in parallel. Thus every step in fig. 3.1 has a 
corresponding expression as follows: 

r0=a0b0.      (1) 
c1r1=a1b0+a0b1.    (2) 
c2r2=c1+a2b0+a1b1 + a0b2.    (3) 
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c3r3=c2+a3b0+a2b1 + a1b2 + a0b3.                (4) 
c4r4=c3+a3b1+a2b2 + a1b3.     (5) 
c5r5=c4+a3b2+a2b3.      (6) 
c6r6=c5+a3b3      (7) 
With c6r6r5r4r3r2r1r0 being the final product. Hence this 

is the general mathematical formula applicable to all cases of 
multiplication and its hardware architecture is shown in fig. 3. 
In order to multiply two 8-bit numbers using 4-bit multiplier 
we proceed as follows. 

 Consider two 8 bit numbers denoted as AHAL and BHBL 
where AH and BH corresponds to the most significant 4 bits, 

AL and BL are the least significant 4 bits of an 8-bit number. 
When the numbers are multiplied multiplied according to 
Urdhava Tiryakbhyam (vertically and crosswire) method, we 
get, 
AH   AL 
BH   BL 
______________ 
(AH x BH) + (AH x BL + BH x AL) + (AL x BL). 

The digits on the two ends of the line are multiplied and 
the result is added with the previous carry. When there are 
more lines in one step, all the results are added to the previous 
carry. 

 
Fig. 4: Hardware Architecture of 4 X 4 Urdhava Tiryakbhyam Multiplier using Reversible DKG Added 

Thus we need four 4-bit multipliers and two adders to add 
the partial products and 4-bit intermediate carry generated. 
Since product of a 4 x 4 multiplier is 8 bits long, in every step 
the least significant 4 bits correspond to the product and the 
remaining 4 bits are carried to the next step. This process 
continues for 3 steps in this case.  Similarly, 16 bit multiplier 
has four 8 x 8 multiplier and two 16 bit adders with 8 bit carry. 
Therefore we see that the multiplier is highly modular in 
nature. Hence it leads to regularity and scalability of the 
multiplier layout. The multiplier architecture is based on this -
Urdhava tiryakbhyam sutra. The advantage of this algorithm is 
that partial products and their sums are calculated in parallel. 
This parallelism makes the multiplier clock independent. The 
other main advantage of this multiplier as compared to other 
multipliers is its regularity. Due to this modular nature the lay 
out design will be easy. The architecture can be explained with 
two eight bit numbers i.e. the multiplier and multiplicand are 
eight bit numbers. The multiplicand and the multiplier are split 
into four bit blocks. The four bit blocks are again divided into 
two bit multiplier blocks. According to the algorithm the 8 x 8 
(AH x BH) bit multiplication will be as follows. 

 AH = AHH - AHL, BH = BHH - BHL  
 AH=AH7AH6AH5AH4AH3AH2AH1AH0, 
 BH = BH7BH6BH5BH4BH3BH2BH1BH0, 
 AHH = AH7AH6AH5AH4,  
 AHL = AH3AH2AH1AH0 
 BHH = BH7BH6BH5BH4, BHL = BH3BH2BH1BH0 

 
Fig. 5: Multiplication of two 8 bit Numbers using Urdhava 

Tiryakbhyam Method 
By the algorithm, the product can be obtained as follows. 

Product of AH x BH = AHL x BHL + (AHH x BHL + AHL x 
BHH) + AHH x BHH 

Thus 8 x 8 multiplications can be decomposed into 2 x 2 
multiplication units. By using this algorithm any complex N x 
N multiplication can be implemented using the basic 2 x 2 
multiplier units. 

 
Fig. 6: Hardware Realization of 2x2 block 

Here a0=AL, a1=AH; 
b0=BL, b1=BH; 

For Multiplier, first the basic blocks, that are the 2x2 bit 
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multipliers have been made and then, using these blocks, 4x4 
block has been made and then using this 4x4 block, 8x8 bit 
block, 16x16 bit block. Urdhava Tiryakbhyam Sutra is a 
general multiplication formula applicable to all cases of 
multiplication. It means “Vertically and Crosswise”. The 
digits on the two ends of the line are multiplied and the result 
is added with the previous carry. When there are more lines in 
one step, all the results are added to the previous carry. The 
least significant digit of the number thus obtained acts as one 
of the result digits and the rest act as the carry for the next 
step. Initially the carry is taken to be as zero. The line diagram 
for multiplication of two 4-bit numbers is as shown in Fig.  

8 X 8 Bit Multiplication Using Urdhava Triyakbhyam 
(Vertically and crosswise) for two Binary numbers 

Consider two binary numbers A and B of 8 bits as 
respectively 

       A =          A7A6A5A4         A3A2A1A0  
                       (X1)                   (X0 ) 
      B=         B7B6B5B4          B3B2B1B0  

                          (Y1)                    (Y0)                

Which can be viewed as two four bit numbers each, i.e. A 
can be viewed as X1 X0 and B can be viewed as Y1 Y0 
respectively, as shown above, thus the multiplication can be 
written as 

                                                     X1  X0 
                                                *   
                                                    Y1  Y0                                
                                           -------------------- 

                                                     EDC 
Where,    CP= C = X0Y0 
                       CP= A = X1Y0 
               CP = B = X0Y1 
               CP= D = A+B 
               CP= E = X1Y1                                    
here CP= Cross Product 

Thus, A*B= EDC, is achieved using Urdhava 
Triyakbhyam (Vertically and crosswise) sutra. 

 

Fig.7: Hardware Architecture of 8 X 8 Urdhava Tiryakbhyam 
Multiplier 

Now we will extend this Sutra to binary number system. 
For the multiplication algorithm, let us consider the 
multiplication of two 8 bit binary numbers 
A7A6A5A4A3A2A1A0 and B7B6B5B4B3B2B1B0. As the 
result of this multiplication would be more than 8 bits, we 
express it as …R7R6R5R4R3R2R1R0. As in the last case, the 
digits on the both sides of the line are multiplied and added 
with the carry from the previous step. This generates one of 

the bits of the result and a carry. This carry is added in the 
next step and hence the process goes on. If more than one lines 
are there in one step, all the results are added to the previous 
carry. In each step, least significant bit acts as the result bit 
and all the other bits act as carry. For example, if in some 
intermediate step we will get 011, then I will act as result bit 
and 01 as the carry. 

V. REVERSIBLE LOGIC GATES 
There exist many reversible gates in the literature. Among 

them 2*2 Feynman gate, 3*3 Fredkin gate, 3*3 Toffoli and 
3*3 Peres is the most referred. The detailed cost of a 
reversible gate depends on any particular realization of 
quantum logic. Generally, the cost is calculated as a total sum 
of 2*2 quantum primitives used. The cost of Toffoli gate is 
exactly the same as the cost of Fredkin gate and is 5. The only 
cheapest quantum realization of a complete (universal) 3*3 
reversible gate is Peres gate and its cost is 4. 

 Controlled NOT (CNOT) gate is an example for a 2*2 
gate. The Reversible 2*2 gate with Quantum Cost of one 
having mapping input (A, B) to output (P = A, Q = A B) 

 
Figure 8: 2*2 Feynman gate 

Reversible 3*3 gate maps inputs (A, B, C) to outputs 
(P=A, Q=A'B+AC, R=AB+A'C) having Quantum cost of 5 
and it requires two dotted rectangles, is equivalent to a 2*2 
Feynman gate with Quantum cost of each dotted rectangle is 
1, 1 V and 2 CNOT gates. 

 
Figure 9: 3*3 Fredkin Gate 

The 3*3 Reversible gate with three inputs and three 
outputs. The inputs (A, B, C) mapped to the outputs (P=A, 
Q=B, R=A.BC) 

 
Figure 10: 3*3 Toffoli Gate 

The three inputs and three outputs i.e., 3*3 reversible gate 
having inputs (A, B, C) mapping to outputs (P = A, Q = A B, 
R = (A.B) C). Since it requires 2 V+, 1 V and 1 CNOT gate, it 
has the Quantum cost of 4. 
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Figure 11: 3*3 Peres gate 

 
Figure 12: 4*4 HNG gate 

Reversible DKG Gate:  
Reversible DKG gate has 4 inputs and 4 outputs, so it is 

called Reversible 4*4 DKG gate, A 4* 4 reversible DKG gate 
that can work singly as a reversible Full adder and a reversible 
Full subtractor is shown in Fig. It can be verified that input 
pattern corresponding to a particular output pattern can be 
uniquely determined. If input A=0, the proposed gate works as 
a reversible Full adder, and if input A=1, then it works as a 
reversible Full subtractor. It has been proved that a reversible 
full-adder circuit requires at least two garbage outputs to make 
the output combinations unique figures. 

 
Figure 13:  Reversible DKG gate 

DKG gate with inputs A, B, C, D and outputs are P, Q, R, 
S. This gate is known as DKG gate. Figure 8 shows the DKG 
gate with 4*4 inputs and outputs. The binary Full 
adder/subtractor is capable of handling one bit of each input 
along with a carry in/borrow in generated as a carry out/ 
borrow from addition of previous lower order bit position. If 
two binary numbers each consisting of n bits are to be added 
or subtracted, then n binary full adders/subtractors are to be 
cascaded. 

 
Figure 14:  DKG gate implemented as Full adder 

 
Figure 15: DKG gate implemented as Full subtractor 

The binary Full adder/subtractor is capable of handling one 
bit of each input along with a carry in/borrow in generated as a 
carry out/ borrow from addition of previous lower order bit 
position. If two binary numbers each consisting of n bits are to 
be added or subtracted, then n binary full adders/subtractors 
are to be cascaded. A Parallel adder/subtractor is an 
interconnection of full adders/subtractors and inputs are 
simultaneously applied. The carry/borrow generated at a stage 
is propagated to the next stage. Thus, delay is more in such 
type of adders/subtractors. A 4 bit reversible parallel 
adder/subtractor is implemented using the reversible DKG 
gate and shown in Fig 10a. When the control input A=0, the 
circuit acts as a parallel adder, produces a 4 bit sum and a 
carry out, as shown in Fig 10b. If the control input A=1, the 
circuit acts as a parallel subtractor, produces a 4 bit difference 
and borrow out, as shown in Fig. The same design can be 
extended to n bits. 

VI. PROPOSED MULTIPLIER 
The  proposed  method  is  based  on  ROM  approach 

however  both  the  inputs  for  the  multiplier can  be  
variables.  In  this  proposed  method  a  ROM  is  used  for  
storing  the squares  of  numbers  as  compared  to  KCM  
where  the  multiples are stored.  

Operation 
To  find  (a  x  b),  first  we  have  to  find  whether  the 

difference between  'a'  and  'b'  is  odd  or  even. Based on the 
difference, the product is calculated. 

 In case of Even Difference  
Result of Multiplication= [Average]^2- [Deviation]^ 2 

 In case of Odd Difference  
     Result  of  Multiplication  =  [Average  x  (Average  +  

1)]  -[Deviation  x (Deviation+  I)]   
Where Average = [(a+b)/2]   

Deviation = [Average – smallest (a, b)]  

Example  4  (Even  difference)  and  Example  5  (Odd 
difference)  depict  the  multiplication  process.  Thus the two 
variable multiplication is performed by averaging, squaring 
and subtraction.  To  find  the  average[(a+b)/2],  which 
involves  division  by  2  is  performed  by  right  shifting  the  
sum  by  one bit.  
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Fig. 16: Block Diagram for Proposed Multiplier 
 If  the  squares  of  the  numbers  are stored  in  a ROM,  

the  result  can  be  instantaneously  calculated. However,  in 
case  of  Odd  difference,  the  process  is  different  as  the  
average  is  a  floating point  number. In  order  to  handle  
floating  point  arithmetic,  Ekadikena  Purvena  - the  Vedic  
Sutra  which  is  used  to  find  the  square  of  numbers  end  
with  5  is  applied. Example 4 illustrates this. In  this  case,  
instead  of squaring  the  average  and  deviation,  [Average  x  
(Average +  1)]  - [Deviation  x  (Deviation+  I)]  is  used.  
However,  instead  of performing the  multiplications, the  
same  ROM is used  and  using  equation  the  result  of  
multiplication  is obtained.  

n(n+l)  = (n2+n)  ... (10)  

Here  n2  is  obtained  from  the  ROM  and  is  added  
with  the  address  which  is  equal  to  n(n+l) 

Example 4: 
16 x 12 = 192 

1) Find the difference between (16-12) = 4 ----Even 
Number 

2) For Even Difference, Product = [Average]^2- 
[Deviation]^2 

i. Average = [(a+b)/2] = [(16+12)12] = [28/2] = 14 

ii. Smallest (a, b) = smallest (l6,12) =12 

iii. Deviation = Average - Smallest (a, b) = 14 -12 =2 
3) Product = 142- 22= 196 - 4 = 192. 

Example 5:  
15 x 12 = 180 
I) Find the difference between (15-12)=3 -7 Odd Number 

2) For Odd Number Difference find the Average and 
Deviation. 

i. Average = [(a+b)/2] = [(12+15)/2] = 13.5 

ii. Deviation = [Average – smallest (a, b)] = 

[12.5 - smallest(l3,12)] = [13.5 - 12] = 1.5 

3) Product = (l3xI4) - (lx2) = 182 - 2 =180. 

VII. SIMULATION RESULTS AND TABLES 

 
Fig. 17: Speed Comparison for (8x8) 

 
Fig. 18: Speed Comparison for DKG (8*8) 

• Simulation Result 
The comparison is carried out in between the reversible 

and conventional logic gates by using XILINX 9.1and 
program is written in VERILOG language. . In reversible logic 
we use DKG and TSG gates for both adder/subtractor as it has 
low power consumption and less garbage output as already 
discussed in the section3. The comparison is carried out for 
the four operand four bit adder/subtractor in reversible and 
conventional gates. 
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Fig. 19: 8 Bit Array Multiplier using DKG 

 
Fig. 20: 8 Bit Urdhava Multiplier using DKG 

 

Fig. 21: 8 Bit Proposed Multiplier  
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Table 1: Results for 8x8 Multiplier 
Criterion Array Multiplier Urdhava Multiplier 

Area 126 180 
Total Combinational Functions 163 149 

Dedicated Logic Registers 48 48 

Total Memory Bits( Kb) 0 0 
Transitions 1557 1501 

Speed(After Pipelining)(MHz) 137.46 142.67 

Power 100 90 
temperature 27c 27c 

Table 2: Results For DKG 8*8 Multiplier 
Criterion Array Multiplier Urdhava Multiplier 

Area 126 180 
Total Combinational Functions 158 146 

Dedicated Logic Registers 46 46 
Total Memory Bits( Kb) 0 0 

Transitions 1551 1547 
Speed(After Pipelining)(MHz) 139.35 145.03 

Total Power 90 82 
temperature 27c 27c 

 

VIII. CONCLUSION  
Thus the proposed multiplier provides higher performance 

for higher order bit multiplication. In the proposed multiplier 
for higher order bit multiplication i.e. for 16x16 and more, the 
multiplier is realized by instantiating the lower order bit 
multipliers like 8x8. This is mainly due to memory constraints. 
Effective memory implementation and deployment of memory 
compression algorithms can yield even better results. 
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